Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Prevent using #[target_feature] on lang item functions #115910

Merged
merged 1 commit into from
Sep 22, 2023
Merged

Prevent using #[target_feature] on lang item functions #115910

merged 1 commit into from
Sep 22, 2023

Conversation

eduardosm
Copy link
Contributor

Fixes #109411 and also prevents from using #[target_feature] on other fn lang items to mitigate the concerns from #109411 (comment).

@rustbot
Copy link
Collaborator

rustbot commented Sep 17, 2023

r? @wesleywiser

(rustbot has picked a reviewer for you, use r? to override)

@rustbot rustbot added S-waiting-on-review Status: Awaiting review from the assignee but also interested parties. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue. labels Sep 17, 2023
@cjgillot
Copy link
Contributor

This check should probably happen in rustc_passes::check_attr, which is meant to verify that attributes are well-formed.

@eduardosm
Copy link
Contributor Author

This check should probably happen in rustc_passes::check_attr, which is meant to verify that attributes are well-formed.

I'm not so sure. Moving the check to check_attr would require figuring there both if the item is a lang item and if it is has target features. In collect_item_extended we already know we are visiting a lang item (and which one in particular), so it only needs to check for the target_feature attribute. Maybe it could be improved by using codegen_fn_attrs to avoid looping over the attributes.

In general, I've seen that check_attr are more like syntactic checks, e.g. that attributes are used on the correct target kind.

@cjgillot
Copy link
Contributor

What about just check for a lang attribute?

@eduardosm
Copy link
Contributor Author

What about just check for a lang attribute?

I'll try that with hir::lang_items::extract, which will also take care of #[panic_handler].

@cjgillot
Copy link
Contributor

Thanks!
@bors r+

@bors
Copy link
Contributor

bors commented Sep 21, 2023

📌 Commit 9102816 has been approved by cjgillot

It is now in the queue for this repository.

@bors bors added S-waiting-on-bors Status: Waiting on bors to run and complete tests. Bors will change the label on completion. and removed S-waiting-on-review Status: Awaiting review from the assignee but also interested parties. labels Sep 21, 2023
@bors
Copy link
Contributor

bors commented Sep 22, 2023

⌛ Testing commit 9102816 with merge aace2df...

@bors
Copy link
Contributor

bors commented Sep 22, 2023

☀️ Test successful - checks-actions
Approved by: cjgillot
Pushing aace2df to master...

@bors bors added the merged-by-bors This PR was explicitly merged by bors. label Sep 22, 2023
@bors bors merged commit aace2df into rust-lang:master Sep 22, 2023
@rustbot rustbot added this to the 1.74.0 milestone Sep 22, 2023
@rust-timer
Copy link
Collaborator

Finished benchmarking commit (aace2df): comparison URL.

Overall result: ❌ regressions - no action needed

@rustbot label: -perf-regression

Instruction count

This is a highly reliable metric that was used to determine the overall result at the top of this comment.

mean range count
Regressions ❌
(primary)
- - 0
Regressions ❌
(secondary)
0.7% [0.7%, 0.7%] 1
Improvements ✅
(primary)
- - 0
Improvements ✅
(secondary)
- - 0
All ❌✅ (primary) - - 0

Max RSS (memory usage)

Results

This is a less reliable metric that may be of interest but was not used to determine the overall result at the top of this comment.

mean range count
Regressions ❌
(primary)
- - 0
Regressions ❌
(secondary)
1.4% [0.8%, 2.0%] 2
Improvements ✅
(primary)
- - 0
Improvements ✅
(secondary)
- - 0
All ❌✅ (primary) - - 0

Cycles

This benchmark run did not return any relevant results for this metric.

Binary size

This benchmark run did not return any relevant results for this metric.

Bootstrap: 631.519s -> 632.249s (0.12%)
Artifact size: 317.47 MiB -> 317.50 MiB (0.01%)

@eduardosm eduardosm deleted the lang-fns-target-features branch July 18, 2024 11:32
fmease added a commit to fmease/rust that referenced this pull request Feb 11, 2025
Stabilize target_feature_11

# Stabilization report

This is an updated version of rust-lang#116114, which is itself a redo of rust-lang#99767. Most of this commit and report were copied from those PRs. Thanks `@LeSeulArtichaut` and `@calebzulawski!`

## Summary
Allows for safe functions to be marked with `#[target_feature]` attributes.

Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits.

However, calling them from other `#[target_feature]` functions with a superset of features is safe.

```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}

fn foo() {
    // Calling `avx2` here is unsafe, as we must ensure
    // that AVX is available first.
    unsafe {
        avx2();
    }
}

#[target_feature(enable = "avx2")]
fn bar() {
    // Calling `avx2` here is safe.
    avx2();
}
```

Moreover, once rust-lang#135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe:

```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}

fn foo() -> fn() {
    // Converting `avx2` to fn() is a compilation error here.
    avx2
}

#[target_feature(enable = "avx2")]
fn bar() -> fn() {
    // `avx2` coerces to fn() here
    avx2
}
```

See the section "Closures" below for justification of this behaviour.

## Test cases
Tests for this feature can be found in [`tests/ui/target_feature/`](https://github.com/rust-lang/rust/tree/f6cb952dc115fd1311b02b694933e31d8dc8b002/tests/ui/target-feature).

## Edge cases
### Closures
 * [target-feature 1.1: should closures inherit target-feature annotations? rust-lang#73631](rust-lang#73631)

Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits.

```rust
#[target_feature(enable = "avx2")]
fn qux() {
    let my_closure = || avx2(); // this call to `avx2` is safe
    let f: fn() = my_closure;
}
```
This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute.

This is usually ensured because target features are assumed to never disappear, and:
- on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call.
- on any safe call, this is guaranteed recursively by the caller.

If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again).

**Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in rust-lang#73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” .
This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. https://github.com/rust-lang/stdarch/blob/2e29bdf90832931ea499755bb4ad7a6b0809295a/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope".

* [Fix #[inline(always)] on closures with target feature 1.1 rust-lang#111836](rust-lang#111836)

Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility.

### ABI concerns
* [The extern "C" ABI of SIMD vector types depends on target features rust-lang#116558](rust-lang#116558)

The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (rust-lang#133102, rust-lang#132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur.

### Special functions
The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods.

This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs:
* [`#[target_feature]` is allowed on `main` rust-lang#108645](rust-lang#108645)
* [`#[target_feature]` is allowed on default implementations rust-lang#108646](rust-lang#108646)
* [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 rust-lang#109411](rust-lang#109411)
* [Prevent using `#[target_feature]` on lang item functions rust-lang#115910](rust-lang#115910)

## Documentation
 * Reference: [Document the `target_feature_11` feature reference#1181](rust-lang/reference#1181)
---

cc tracking issue rust-lang#69098
cc `@workingjubilee`
cc `@RalfJung`
r? `@rust-lang/lang`
jhpratt added a commit to jhpratt/rust that referenced this pull request Feb 13, 2025
Stabilize target_feature_11

# Stabilization report

This is an updated version of rust-lang#116114, which is itself a redo of rust-lang#99767. Most of this commit and report were copied from those PRs. Thanks ``@LeSeulArtichaut`` and ``@calebzulawski!``

## Summary
Allows for safe functions to be marked with `#[target_feature]` attributes.

Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits.

However, calling them from other `#[target_feature]` functions with a superset of features is safe.

```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}

fn foo() {
    // Calling `avx2` here is unsafe, as we must ensure
    // that AVX is available first.
    unsafe {
        avx2();
    }
}

#[target_feature(enable = "avx2")]
fn bar() {
    // Calling `avx2` here is safe.
    avx2();
}
```

Moreover, once rust-lang#135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe:

```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}

fn foo() -> fn() {
    // Converting `avx2` to fn() is a compilation error here.
    avx2
}

#[target_feature(enable = "avx2")]
fn bar() -> fn() {
    // `avx2` coerces to fn() here
    avx2
}
```

See the section "Closures" below for justification of this behaviour.

## Test cases
Tests for this feature can be found in [`tests/ui/target_feature/`](https://github.com/rust-lang/rust/tree/f6cb952dc115fd1311b02b694933e31d8dc8b002/tests/ui/target-feature).

## Edge cases
### Closures
 * [target-feature 1.1: should closures inherit target-feature annotations? rust-lang#73631](rust-lang#73631)

Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits.

```rust
#[target_feature(enable = "avx2")]
fn qux() {
    let my_closure = || avx2(); // this call to `avx2` is safe
    let f: fn() = my_closure;
}
```
This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute.

This is usually ensured because target features are assumed to never disappear, and:
- on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call.
- on any safe call, this is guaranteed recursively by the caller.

If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again).

**Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in rust-lang#73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” .
This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. https://github.com/rust-lang/stdarch/blob/2e29bdf90832931ea499755bb4ad7a6b0809295a/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope".

* [Fix #[inline(always)] on closures with target feature 1.1 rust-lang#111836](rust-lang#111836)

Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility.

### ABI concerns
* [The extern "C" ABI of SIMD vector types depends on target features rust-lang#116558](rust-lang#116558)

The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (rust-lang#133102, rust-lang#132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur.

### Special functions
The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods.

This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs:
* [`#[target_feature]` is allowed on `main` rust-lang#108645](rust-lang#108645)
* [`#[target_feature]` is allowed on default implementations rust-lang#108646](rust-lang#108646)
* [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 rust-lang#109411](rust-lang#109411)
* [Prevent using `#[target_feature]` on lang item functions rust-lang#115910](rust-lang#115910)

## Documentation
 * Reference: [Document the `target_feature_11` feature reference#1181](rust-lang/reference#1181)
---

cc tracking issue rust-lang#69098
cc ``@workingjubilee``
cc ``@RalfJung``
r? ``@rust-lang/lang``
jhpratt added a commit to jhpratt/rust that referenced this pull request Feb 13, 2025
Stabilize target_feature_11

# Stabilization report

This is an updated version of rust-lang#116114, which is itself a redo of rust-lang#99767. Most of this commit and report were copied from those PRs. Thanks ```@LeSeulArtichaut``` and ```@calebzulawski!```

## Summary
Allows for safe functions to be marked with `#[target_feature]` attributes.

Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits.

However, calling them from other `#[target_feature]` functions with a superset of features is safe.

```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}

fn foo() {
    // Calling `avx2` here is unsafe, as we must ensure
    // that AVX is available first.
    unsafe {
        avx2();
    }
}

#[target_feature(enable = "avx2")]
fn bar() {
    // Calling `avx2` here is safe.
    avx2();
}
```

Moreover, once rust-lang#135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe:

```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}

fn foo() -> fn() {
    // Converting `avx2` to fn() is a compilation error here.
    avx2
}

#[target_feature(enable = "avx2")]
fn bar() -> fn() {
    // `avx2` coerces to fn() here
    avx2
}
```

See the section "Closures" below for justification of this behaviour.

## Test cases
Tests for this feature can be found in [`tests/ui/target_feature/`](https://github.com/rust-lang/rust/tree/f6cb952dc115fd1311b02b694933e31d8dc8b002/tests/ui/target-feature).

## Edge cases
### Closures
 * [target-feature 1.1: should closures inherit target-feature annotations? rust-lang#73631](rust-lang#73631)

Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits.

```rust
#[target_feature(enable = "avx2")]
fn qux() {
    let my_closure = || avx2(); // this call to `avx2` is safe
    let f: fn() = my_closure;
}
```
This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute.

This is usually ensured because target features are assumed to never disappear, and:
- on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call.
- on any safe call, this is guaranteed recursively by the caller.

If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again).

**Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in rust-lang#73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” .
This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. https://github.com/rust-lang/stdarch/blob/2e29bdf90832931ea499755bb4ad7a6b0809295a/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope".

* [Fix #[inline(always)] on closures with target feature 1.1 rust-lang#111836](rust-lang#111836)

Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility.

### ABI concerns
* [The extern "C" ABI of SIMD vector types depends on target features rust-lang#116558](rust-lang#116558)

The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (rust-lang#133102, rust-lang#132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur.

### Special functions
The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods.

This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs:
* [`#[target_feature]` is allowed on `main` rust-lang#108645](rust-lang#108645)
* [`#[target_feature]` is allowed on default implementations rust-lang#108646](rust-lang#108646)
* [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 rust-lang#109411](rust-lang#109411)
* [Prevent using `#[target_feature]` on lang item functions rust-lang#115910](rust-lang#115910)

## Documentation
 * Reference: [Document the `target_feature_11` feature reference#1181](rust-lang/reference#1181)
---

cc tracking issue rust-lang#69098
cc ```@workingjubilee```
cc ```@RalfJung```
r? ```@rust-lang/lang```
rust-timer added a commit to rust-lang-ci/rust that referenced this pull request Feb 13, 2025
Rollup merge of rust-lang#134090 - veluca93:stable-tf11, r=oli-obk

Stabilize target_feature_11

# Stabilization report

This is an updated version of rust-lang#116114, which is itself a redo of rust-lang#99767. Most of this commit and report were copied from those PRs. Thanks ```@LeSeulArtichaut``` and ```@calebzulawski!```

## Summary
Allows for safe functions to be marked with `#[target_feature]` attributes.

Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits.

However, calling them from other `#[target_feature]` functions with a superset of features is safe.

```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}

fn foo() {
    // Calling `avx2` here is unsafe, as we must ensure
    // that AVX is available first.
    unsafe {
        avx2();
    }
}

#[target_feature(enable = "avx2")]
fn bar() {
    // Calling `avx2` here is safe.
    avx2();
}
```

Moreover, once rust-lang#135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe:

```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}

fn foo() -> fn() {
    // Converting `avx2` to fn() is a compilation error here.
    avx2
}

#[target_feature(enable = "avx2")]
fn bar() -> fn() {
    // `avx2` coerces to fn() here
    avx2
}
```

See the section "Closures" below for justification of this behaviour.

## Test cases
Tests for this feature can be found in [`tests/ui/target_feature/`](https://github.com/rust-lang/rust/tree/f6cb952dc115fd1311b02b694933e31d8dc8b002/tests/ui/target-feature).

## Edge cases
### Closures
 * [target-feature 1.1: should closures inherit target-feature annotations? rust-lang#73631](rust-lang#73631)

Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits.

```rust
#[target_feature(enable = "avx2")]
fn qux() {
    let my_closure = || avx2(); // this call to `avx2` is safe
    let f: fn() = my_closure;
}
```
This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute.

This is usually ensured because target features are assumed to never disappear, and:
- on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call.
- on any safe call, this is guaranteed recursively by the caller.

If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again).

**Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in rust-lang#73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” .
This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. https://github.com/rust-lang/stdarch/blob/2e29bdf90832931ea499755bb4ad7a6b0809295a/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope".

* [Fix #[inline(always)] on closures with target feature 1.1 rust-lang#111836](rust-lang#111836)

Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility.

### ABI concerns
* [The extern "C" ABI of SIMD vector types depends on target features rust-lang#116558](rust-lang#116558)

The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (rust-lang#133102, rust-lang#132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur.

### Special functions
The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods.

This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs:
* [`#[target_feature]` is allowed on `main` rust-lang#108645](rust-lang#108645)
* [`#[target_feature]` is allowed on default implementations rust-lang#108646](rust-lang#108646)
* [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 rust-lang#109411](rust-lang#109411)
* [Prevent using `#[target_feature]` on lang item functions rust-lang#115910](rust-lang#115910)

## Documentation
 * Reference: [Document the `target_feature_11` feature reference#1181](rust-lang/reference#1181)
---

cc tracking issue rust-lang#69098
cc ```@workingjubilee```
cc ```@RalfJung```
r? ```@rust-lang/lang```
github-actions bot pushed a commit to rust-lang/miri that referenced this pull request Feb 15, 2025
Stabilize target_feature_11

# Stabilization report

This is an updated version of rust-lang/rust#116114, which is itself a redo of rust-lang/rust#99767. Most of this commit and report were copied from those PRs. Thanks ```@LeSeulArtichaut``` and ```@calebzulawski!```

## Summary
Allows for safe functions to be marked with `#[target_feature]` attributes.

Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits.

However, calling them from other `#[target_feature]` functions with a superset of features is safe.

```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}

fn foo() {
    // Calling `avx2` here is unsafe, as we must ensure
    // that AVX is available first.
    unsafe {
        avx2();
    }
}

#[target_feature(enable = "avx2")]
fn bar() {
    // Calling `avx2` here is safe.
    avx2();
}
```

Moreover, once rust-lang/rust#135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe:

```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}

fn foo() -> fn() {
    // Converting `avx2` to fn() is a compilation error here.
    avx2
}

#[target_feature(enable = "avx2")]
fn bar() -> fn() {
    // `avx2` coerces to fn() here
    avx2
}
```

See the section "Closures" below for justification of this behaviour.

## Test cases
Tests for this feature can be found in [`tests/ui/target_feature/`](https://github.com/rust-lang/rust/tree/f6cb952dc115fd1311b02b694933e31d8dc8b002/tests/ui/target-feature).

## Edge cases
### Closures
 * [target-feature 1.1: should closures inherit target-feature annotations? #73631](rust-lang/rust#73631)

Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits.

```rust
#[target_feature(enable = "avx2")]
fn qux() {
    let my_closure = || avx2(); // this call to `avx2` is safe
    let f: fn() = my_closure;
}
```
This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute.

This is usually ensured because target features are assumed to never disappear, and:
- on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call.
- on any safe call, this is guaranteed recursively by the caller.

If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again).

**Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in #73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” .
This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. https://github.com/rust-lang/stdarch/blob/2e29bdf90832931ea499755bb4ad7a6b0809295a/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope".

* [Fix #[inline(always)] on closures with target feature 1.1 #111836](rust-lang/rust#111836)

Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility.

### ABI concerns
* [The extern "C" ABI of SIMD vector types depends on target features #116558](rust-lang/rust#116558)

The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (#133102, #132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur.

### Special functions
The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods.

This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs:
* [`#[target_feature]` is allowed on `main` #108645](rust-lang/rust#108645)
* [`#[target_feature]` is allowed on default implementations #108646](rust-lang/rust#108646)
* [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 #109411](rust-lang/rust#109411)
* [Prevent using `#[target_feature]` on lang item functions #115910](rust-lang/rust#115910)

## Documentation
 * Reference: [Document the `target_feature_11` feature reference#1181](rust-lang/reference#1181)
---

cc tracking issue rust-lang/rust#69098
cc ```@workingjubilee```
cc ```@RalfJung```
r? ```@rust-lang/lang```
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
merged-by-bors This PR was explicitly merged by bors. S-waiting-on-bors Status: Waiting on bors to run and complete tests. Bors will change the label on completion. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

#[target_feature] is allowed on #[panic_handler] with target_feature 1.1
6 participants